Author: tigesole.online

  • RICE

    Rice is a cereal grain and in its domesticated form is the staple food of over half of the world’s population, particularly in Asia and Africa. Rice is the seed of the grass species Oryza sativa (Asian rice)—or, much less commonly, Oryza glaberrima (African rice). Asian rice was domesticated in China some 13,500 to 8,200 years ago; African rice was domesticated in Africa about 3,000 years ago. Rice has become commonplace in many cultures worldwide; in 2021, 787 million tons were produced, placing it fourth after sugarcanemaize, and wheat. Only some 8% of rice is traded internationally. China, India, and Indonesia are the largest consumers of rice. A substantial amount of the rice produced in developing nations is lost after harvest through factors such as poor transport and storage. Rice yields can be reduced by pests including insectsrodents, and birds, as well as by weeds, and by diseases such as rice blast. Traditional rice polycultures such as rice-duck farming, and modern integrated pest management seek to control damage from pests in a sustainable way.

    Many varieties of rice have been bred to improve crop quality and productivity. Biotechnology has created Green Revolution rice able to produce high yields when supplied with nitrogen fertiliser and managed intensively. Other products are rice able to express human proteins for medicinal use; flood-tolerant or deepwater rice; and drought-tolerant and salt-tolerant varieties. Rice is used as a model organism in biology.

    Dry rice grain is milled to remove the outer layers; depending on how much is removed, products range from brown rice to rice with germ and white rice. Some is parboiled to make it easy to cook. Rice contains no gluten; it provides protein but not all the essential amino acids needed for good health. Rice of different types is eaten around the world. Long-grain rice tends to stay intact on cooking; medium-grain rice is stickier, and is used for sweet dishes, and in Italy for risotto; and sticky short-grain rice is used in Japanese sushi as it keeps its shape when cooked. White rice when cooked contains 29% carbohydrate and 2% protein, with some manganeseGolden rice is a variety produced by genetic engineering to contain vitamin A.

    Production of rice is estimated to have caused over 1% of global greenhouse gas emissions in 2022. Predictions of how rice yields will be affected by climate change vary across geographies and socioeconomic contexts. In human culture, rice plays a role in various religions and traditions, such as in weddings.

    Description

    The rice plant can grow to over 1 m (3 ft) tall; if in deep water, it can reach a length of 5 m (16 ft). A single plant may have several leafy stems or tillers. The upright stem is jointed with nodes along its length; a long slender leaf arises from each node.[1] The self-fertile flowers are produced in a panicle, a branched inflorescence which arises from the last internode on the stem. There can be up to 350 spikelets in a panicle, each containing male and female flower parts (anthers and ovule). A fertilised ovule develops into the edible grain or caryopsis.[2]

    Rice is a cereal belonging to the family Poaceae. As a tropical crop, it can be grown during the two distinct seasons (dry and wet) of the year provided that sufficient water is made available.[3] It is normally an annual, but in the tropics it can survive as a perennial, producing a ratoon crop.[4]

    • Anatomy of rice flowers: spikelet (left), plant with tillers (centre), caryopsis (top right), panicle (right)
    • Detail of rice plant showing flowers grouped in panicle. Male anthers protrude into the air where they can disperse their pollen.

    Agronomy

    Growing

    Like all crops, rice depends for its growth on both biotic and abiotic environmental factors. The principal biotic factors are crop variety, pests, and plant diseases. Abiotic factors include the soil type, whether lowland or upland, amount of rain or irrigation water, temperature, day length, and intensity of sunlight.[5]

    Rice grains can be planted directly into the field where they will grow, or seedlings can be grown in a seedbed and transplanted into the field. Direct seeding needs some 60 to 80 kg of grain per hectare, while transplanting needs less, around 40 kg per hectare, but requires far more labour.[6] Most rice in Asia is transplanted by hand. Mechanical transplanting takes less time but requires a carefully-prepared field and seedlings raised on mats or in trays to fit the machine.[7] Rice does not thrive if continuously submerged.[8] Rice can be grown in different environments, depending upon water availability. The usual arrangement is for lowland fields to be surrounded by bunds and flooded to a depth of a few centimetres until around a week before harvest time; this requires a large amount of water. The “alternate wetting and drying” technique uses less water. One form of this is to flood the field to a depth of 5 cm (2 in), then to let the water level drop to 15 cm (6 in) below surface level, as measured by looking into a perforated field water tube sunk into the soil, and then repeating the cycle.[9] Deepwater rice varieties tolerate flooding to a depth of over 50 centimetres for at least a month.[10] Upland rice is grown without flooding, in hilly or mountainous regions; it is rainfed like wheat or maize.[11]

    Ploughing a rice terrace with water buffaloes in Java

    Farmers planting rice by hand in Cambodia

    Mechanised rice planting in Japan

    Ancient mountainside rice terraces at Banaue, Philippines

    Harvesting

    Across Asia, unmilled rice or “paddy” (Indonesian and Malay padi), was traditionally the product of smallholder agriculture, with manual harvesting. Larger farms make use of machines such as combine harvesters to reduce the input of labour.[12] The grain is ready to harvest when the moisture content is 20–25%. Harvesting involves reaping, stacking the cut stalks, threshing to separate the grain, and cleaning by winnowing or screening.[13] The rice grain is dried as soon as possible to bring the moisture content down to a level that is safe from mould fungi. Traditional drying relies on the heat of the sun, with the grain spread out on mats or on pavements.[14]

    Rice combine harvester in Chiba Prefecture, Japan

    After the harvest, rice straw is gathered in the traditional way from small paddy fields in Mae Wang, Thailand

    Burning of rice residues to prepare the land for wheat planting in Sangrur, India

    Drying rice in Peravoor, India

    Evolution

    Phylogeny

    Further information: Oryza sativa

    The edible rice species are members of the BOP clade within the grass family, the Poaceae. The rice subfamily, Oryzoideae, is sister to the bamboos, Bambusoideae, and the cereal subfamily Pooideae. The rice genus Oryza is one of eleven in the Oryzeae; it is sister to the Phyllorachideae. The edible rice species O. sativa and O. glaberrima are among some 300 species or subspecies in the genus.[15]

    Poaceaeother grassesPACMAD clade(inc. the C4 grassesmaizesorghum)BOP cladeOryzoideaeStreptogyneaeEhrharteaePhyllorachideaeOryzeaeWild rices inc. ZizaniaOryzaother rice species and subspeciesO. sativa (Asian rice)O. glaberrima (African rice)Bambusoideae (bamboos)Pooideae (grasses and cereals inc. wheatbarley)

    History

    Main article: History of rice cultivation

    Bas-relief of 9th century Borobudur in Indonesia describes rice barns and rice plants infested by mice.

    Oryza sativa rice was first domesticated in China 9,000 years ago,[16] by people of Neolithic cultures in the Upper and Lower Yangtze, associated with Hmong-Mien-speakers and pre-Austronesians, respectively.[17][18][19][20] The functional allele for nonshattering, the critical indicator of domestication in grains, as well as five other single-nucleotide polymorphisms, is identical in both indica and japonica. This implies a single domestication event for O. sativa.[21] Both indica and japonica forms of Asian rice sprang from a single domestication event in China from the wild rice Oryza rufipogon.[22][21] Despite this evidence, it appears that indica rice arose when japonica arrived in India about 4,500 years ago and hybridised with another rice, whether an undomesticated proto-indica or wild O. nivara.[23]

    Rice was introduced early into Sino-Tibetan cultures in northern China by around 6000 to 5600 years ago,[24][25][18] and to the Korean peninsula and Japan by around 5500 to 3200 years ago.[26][27] It was also carried into Taiwan by the Dapenkeng culture by 5500 to 4000 years ago, before spreading southwards via the Austronesian migrations to Island Southeast AsiaMadagascar, and Guam, but did not survive the voyage to the rest of the Pacific.[17][28][29] It reached Austroasiatic and Kra-Dai-speakers in Mainland Southeast Asia and southern China by 5000 years ago.[17][30]

    Rice spread around the rest of the world through cultivation, migration and trade, eventually to the Americas as part of the Columbian exchange after 1492.[31] The now less common Oryza glaberrima (African rice) was independently domesticated in Africa around 3,000 years ago,[31] and introduced to the Americas by the Spanish.[32] In British North America by the time of the start of the American War of Independence, rice had become the fourth most valuable export commodity behind only tobacco, wheat, and fish.[33]

    Commerce

    Rice production – 2021
    CountryMillions of tonnes
     China213
     India195
     Bangladesh57
     Indonesia54
     Vietnam44
     Thailand30
    World787[34]

    Production

    See also: List of countries by rice production

    In 2021, world production of rice was 787 million tonnes, led by China and India with a combined 52% of the total.[34] This placed rice fourth in the list of crops by production, after sugarcanemaize, and wheat.[35] Other major producers were BangladeshIndonesia and Vietnam.[35] 90% of world production is from Asia.[36]

    • Production of rice (2021)[35]
    • Since 2000, rice production (orange) has increased,
      but its share of total crop production has fallen.

    Yield records

    The average world yield for rice was 4.7 metric tons per hectare (2.1 short tons per acre), in 2022.[37] Yuan Longping of China’s National Hybrid Rice Research and Development Center set a world record for rice yield in 1999 at 17.1 metric tons per hectare (7.6 short tons per acre) on a demonstration plot. This employed specially developed hybrid rice and the System of Rice Intensification (SRI), an innovation in rice farming.[38]

    Food security

    Rice is a major food staple in Asia, Latin America, and some parts of Africa,[39] feeding over half the world’s population.[36] However, a substantial part of the crop can be lost post-harvest through inefficient transportation, storage, and milling. A quarter of the crop in Nigeria is lost after harvest. Storage losses include damage by mould fungi if the rice is not dried sufficiently. In China, losses in modern metal silos were just 0.2%, compared to 7–13% when rice was stored by rural households.[40]

    Processing


    Rice processing removes one or more layers to create marketable products.
    Rice with chaffBrown riceRice with germWhite rice with bran residuePolishedChaffBranBran residueCereal germEndosperm

    The dry grain is milled to remove the outer layers, namely the husk and bran. These can be removed in a single step, in two steps, or as in commercial milling in a multi-step process of cleaning, dehusking, separation, polishing, grading, and weighing.[41] Brown rice only has the inedible husk removed.[42] Further milling removes bran and the germ to create successively whiter products.[42] Parboiled rice is subjected to a steaming process before it is milled. This makes the grain harder, and moves some of the grain’s vitamins and minerals into the white part of the rice so these are retained after milling.[42] Rice does not contain gluten, so is suitable for people on a gluten-free diet.[43] Rice is a good source of protein and a staple food in many parts of the world, but it is not a complete protein as it does not contain all of the essential amino acids in sufficient amounts for good health.[44]

    Trade

    World trade figures are much smaller than those for production, as less than 8% of rice produced is traded internationally. China, an exporter of rice in the early 2000s, had become the world’s largest importer of rice by 2013.[45] Developing countries are the main players in the world rice trade; by 2012, India was the largest exporter of rice, with Thailand and Vietnam the other largest exporters.[46]

    Worldwide consumption

    As of 2016, the countries that consumed the most rice were China (29% of total), India, and Indonesia.[47] By 2020, Bangladesh had taken third place from Indonesia. On an annual average from 2020 to 2023, China consumed 154 million tonnes of rice, India consumed 109 million tonnes, and Bangladesh and Indonesia consumed about 36 million tonnes each. Across the world, rice consumption per capita fell in the 21st century as people in Asia and elsewhere ate less grain and more meat. An exception is Sub-Saharan Africa, where both per capita consumption of rice and population are increasing.[48]

    Food

    Nutritional value per 100 g (3.5 oz)
    Energy544 kJ (130 kcal)
    Carbohydrates28.6 g
    Fat0.2 g
    Protein2.4 g
    showVitamins and minerals
    Other constituentsQuantity
    Water69 g
    FoodData Central entry
    Percentages estimated using US recommendations for adults,[49] except for potassium, which is estimated based on expert recommendation from the National Academies.[50]

    Main article: Rice as food

    Eating qualities

    Rice is a commonly-eaten food around the world. The varieties of rice are typically classified as short-, medium-, and long-grained. Oryza sativa indica varieties are usually long-grained; Oryza sativa japonica varieties are usually short- or medium-grained. Short-grain rice, with the exception of Spanish Bomba, is usually sticky when cooked, and is suitable for puddings. Thai Jasmine rice is aromatic, and unusually for a long-grain rice has some stickiness, with a soft texture. Indian Basmati rice is very long-grained and aromatic. Italian Arborio rice, used for risotto, is of medium length, oval, and quite sticky. Japanese sushi rice is a sticky short-grain variety.[51]

    Nutrition

    Cooked white rice is 69% water, 29% carbohydrates, 2% protein, and contains negligible fat (table). In a reference serving of 100 grams (3.5 oz), cooked white rice provides 130 calories of food energy, and contains moderate levels of manganese (18% DV), with no other micronutrients in significant content (all less than 10% of the Daily Value).[52] In 2018, the World Health Organization strongly recommended fortifying rice with iron, and conditionally recommended fortifying it with vitamin A and with folic acid.[53]

    Golden rice

    Main article: Golden rice

    Golden rice is a variety produced through genetic engineering to synthesize beta-carotene, a precursor of vitamin A, in the endosperm of the rice grain. It is intended to be grown and eaten in parts of the world where Vitamin A deficiency is prevalent.[54][55] Golden rice has been opposed by activists, such as in the Philippines.[56] In 2016 more than 100 Nobel laureates encouraged the use of genetically modified organisms, such as golden rice, for the benefits these could bring.[57]

    Rice and climate change

    Greenhouse gases from rice production

    Scientists measuring the greenhouse gas emissions of rice

    In 2022, greenhouse gas emissions from rice cultivation were estimated at 5.7 billion tonnes CO2eq, representing 1.2% of total emissions.[58] Within the agriculture sector, rice produces almost half the greenhouse gas emissions from croplands,[59] some 30% of agricultural methane emissions, and 11% of agricultural nitrous oxide emissions.[60] Methane is released from rice fields subject to long-term flooding, as this inhibits the soil from absorbing atmospheric oxygen, resulting in anaerobic fermentation of organic matter in the soil.[61] Emissions can be limited by planting new varieties, not flooding continuously, and removing straw.[62]

    It is possible to cut methane emissions in rice cultivation by improved water management, combining dry seeding and one drawdown, or executing a sequence of wetting and drying. This results in emission reductions of up to 90% compared to full flooding and even increased yields.[63]

    Effects of climate change on rice production

    Predictions of climate change’s effects on rice cultivation vary. Global rice yield has been projected to decrease by around 3.2% with each 1 °C increase in global average temperature[64] while another study predicts global rice cultivation will increase initially, plateauing at about 3 °C warming (2091–2100 relative to 1850–1900).[65]

    The impacts of climate change on rice cultivation vary across geographic location and socioeconomic context. For example, rising temperatures and decreasing solar radiation during the later years of the 20th century decreased rice yield by between 10% and 20% across 200 farms in seven Asian countries. This may have been caused by increased night-time respiration.[66][67] IRRI has predicted that Asian rice yields will fall by some 20% per 1 °C rise in global mean temperature. Further, rice is unable to yield grain if the flowers experience a temperature of 35 °C or more for over one hour, so the crop would be lost under these conditions.[68][69]

    In the Po Valley in Italy, the arborio and carnaroli risotto rice varieties have suffered poor harvests through drought in the 21st century. The Ente Nazionale Risi [it] is developing drought-resistant varieties; its nuovo prometeo variety has deep roots that enable it to tolerate drought, but is not suitable for risotto.[70]

    Pests, weeds, and diseases

    Pests and weeds

    Chinese rice grasshopper (Oxya chinensis)

    Rice yield can be reduced by weed growth, and a wide variety of pests including insects, nematodes, rodents such as rats, snails, and birds.[71] Major rice insect pests include armyworms, rice bugsblack bugs, cutworms, field crickets, grasshoppers, leafhoppers, mealybugs, and planthoppers.[72] High rates of nitrogen fertiliser application may worsen aphid outbreaks.[73] Weather conditions can contribute to pest outbreaks: rice gall midge outbreaks are worsened by high rainfall in the wet season, while thrips outbreaks are associated with drought.[74]

    Main page: Category:Insect pests of rice

    Diseases

    Main article: List of rice diseases

    Healthy rice (left) and rice with rice blast

    Rice blast, caused by the fungus Magnaporthe grisea, is the most serious disease of growing rice.[75] It and bacterial leaf streak (caused by Xanthomonas oryzae pv. oryzae) are perennially the two worst rice diseases worldwide; they are both among the ten most important diseases of all crop plants.[76] Other major rice diseases include sheath blight (caused by Rhizoctonia solani), false smut (Ustilaginoidea virens), and bacterial panicle blight (Burkholderia glumae).[76] Viral diseases include rice bunchy stunt, rice dwarf, rice tungro, and rice yellow mottle.[77]

    Pest management

    Further information: Integrated pest management and rice-duck farming

    Crop protection scientists are developing sustainable techniques for managing rice pests.[78] Sustainable pest management is based on four principles: biodiversity, host plant resistance, landscape ecology, and hierarchies in a landscape—from biological to social.[79] Farmers’ pesticide applications are often unnecessary.[80] Pesticides may actually induce resurgence of populations of rice pests such as the brown planthopper, both by destroying beneficial insects and by enhancing the pest’s reproduction.[81] The International Rice Research Institute (IRRI) demonstrated in 1993 that an 87.5% reduction in pesticide use can lead to an overall drop in pest numbers.[82]

    A farmer grazes his ducks in paddy fields, Central Java

    Farmers in China, Indonesia and the Philippines have traditionally managed weeds and pests by the polycultural practice of raising ducks and sometimes fish in their rice paddies. These produce valuable additional crops, eat small pest animals, manure the rice, and in the case of ducks also control weeds.[83][84]

    Rice plants produce their own chemical defences to protect themselves from pest attacks. Some synthetic chemicals, such as the herbicide 2,4-D, cause the plant to increase the production of certain defensive chemicals and thereby increase the plant’s resistance to some types of pests.[85] Conversely, other chemicals, such as the insecticide imidacloprid, appear to induce changes in the gene expression of the rice that make the plant more susceptible to certain pests.[86]

    Plant breeders have created rice cultivars incorporating resistance to various insect pests. Conventional plant breeding of resistant varieties has been limited by challenges such as rearing insect pests for testing, and the great diversity and continuous evolution of pests. Resistance genes are being sought from wild species of rice, and genetic engineering techniques are being applied.[87]

    Ecotypes and cultivars

    Main article: List of rice cultivars

    A few of the many cultivars in IRRI‘s rice seed collection

    The International Rice Research Institute maintains the International Rice Genebank, which holds over 100,000 rice varieties.[88][89] Much of southeast Asia grows sticky or glutinous rice varieties.[90] High-yield cultivars of rice suitable for cultivation in Africa, called the New Rice for Africa (NERICA), have been developed to improve food security and alleviate poverty in Sub-Saharan Africa.[91]

    The complete genome of rice was sequenced in 2005, making it the first crop plant to reach this status.[92] Since then, the genomes of hundreds of types of rice, both wild and cultivated, and including both Asian and African rice species, have been sequenced.[93]

    Biotechnology

    High-yielding varieties

    Main article: Green revolution

    The high-yielding varieties are a group of crops created during the Green Revolution to increase global food production radically. The first Green Revolution rice variety, IR8, was produced in 1966 at the International Rice Research Institute through a cross between an Indonesian variety named “Peta” and a Chinese variety named “Dee Geo Woo Gen”.[94] Green Revolution varieties were bred to have short strong stems so that the rice would not lodge or fall over. This enabled them to stay upright and productive even with heavy applications of fertiliser.[94]

    Expression of human proteins

    Ventria Bioscience has genetically modified rice to express lactoferrin and lysozyme which are proteins usually found in breast milk, and human serum albumin. These proteins have antiviralantibacterial, and antifungal effects.[95] Rice containing these added proteins can be used as a component in oral rehydration solutions to treat diarrheal diseases, thereby shortening their duration and reducing recurrence. Such supplements may also help reverse anemia.[96]

    Flood-tolerance

    Main article: Deepwater rice

    International Rice Research Institute researchers checking deepwater rice in the Philippines

    In areas subject to flooding, farmers have long planted flood tolerant varieties known as deepwater rice. In South and South East Asia, flooding affects some 20 million hectares (49 million acres) each year.[97] Flooding has historically led to massive losses in yields, such as in the Philippines, where in 2006, rice crops worth $65 million were lost to flooding.[98]

    Standard rice varieties cannot withstand stagnant flooding for more than about a week, since it disallows the plant access to necessary requirements such as sunlight and gas exchange. The Swarna Sub1 cultivar can tolerate week-long submergence, consuming carbohydrates efficiently and continuing to grow.[97] So-called “scuba rice”[99] with the Sub1A transgene is robustly tolerant of submergence for as long as two weeks, offering much improved flood survival for farmers’ crops. IRRI has created Sub1A varieties and distributed them to Bangladesh, India, Indonesia, Nepal, and the Philippines.[100]

    Drought-tolerance

    Drought represents a significant environmental stress for rice production, with 19–23 million hectares (47–57 million acres) of rainfed rice production in South and South East Asia often at risk.[101][102] Under drought conditions, without sufficient water to afford them the ability to obtain the required levels of nutrients from the soil, conventional commercial rice varieties can be severely affected—as happened for example in India early in the 21st century.[103]

    The International Rice Research Institute conducts research into developing drought-tolerant rice varieties, including the varieties Sahbhagi Dhan, Sahod Ulan, and Sookha dhan, currently being employed by farmers in India, the Philippines, and Nepal respectively.[102] In addition, in 2013 the Japanese National Institute for Agrobiological Sciences led a team which successfully inserted the DEEPER ROOTING 1 (DRO1) gene, from the Philippine upland rice variety Kinandang Patong, into the popular commercial rice variety IR64, giving rise to a far deeper root system in the resulting plants.[103] This facilitates an improved ability for the rice plant to derive its required nutrients in times of drought via accessing deeper layers of soil, a feature demonstrated by trials which saw the IR64 + DRO1 rice yields drop by 10% under moderate drought conditions, compared to 60% for the unmodified IR64 variety.[103][104]

    Salt-tolerance

    Further information: Crop tolerance to seawater

    Soil salinity poses a major threat to rice crop productivity, particularly along low-lying coastal areas during the dry season.[101][105] For example, roughly 1 million hectares (2.5 million acres) of the coastal areas of Bangladesh are affected by saline soils.[106] These high concentrations of salt can severely affect rice plants’ physiology, especially during early stages of growth, and as such farmers are often forced to abandon these areas.[107]

    Progress has been made in developing rice varieties capable of tolerating such conditions; the hybrid created from the cross between the commercial rice variety IR56 and the wild rice species Oryza coarctata is one example.[108] O. coarctata can grow in soils with double the limit of salinity of normal varieties, but does not produce edible rice.[108] Developed by the International Rice Research Institute, the hybrid variety utilises specialised leaf glands that remove salt into the atmosphere. It was produced from one successful embryo out of 34,000 crosses between the two species; this was then backcrossed to IR56 with the aim of preserving the genes responsible for salt tolerance that were inherited from O. coarctata.[107]

    Cold tolerance

    Rice is sensitive to temperatures below 12C. Sowing takes place once the daily average temperature is reliably above this limit. Average temperatures below that reduce growth; if sustained for over four days, germination and seedling growth are harmed and seedlings may die. In larger plants subjected to cold, rice blast is encouraged, seriously reducing yield. As of 2022, researchers continue to study the mechanisms of chilling tolerance in rice and its genetic basis.[109]

    Reducing methane emissions

    Producing rice in paddies is harmful for the environment due to the release of methane by methanogenic bacteria. These bacteria live in the anaerobic waterlogged soil, consuming nutrients released by rice roots. Putting the barley gene SUSIBA2 into rice creates a shift in biomass production from root to shoot, decreasing the methanogen population, and resulting in a reduction of methane emissions of up to 97%. Further, the modification increases the amount of rice grains.[110][111]

    Model organism

    Rice is used as a model organism for investigating the mechanisms of meiosis and DNA repair in higher plants.[112] For example, study using rice has shown that the gene OsRAD51C is necessary for the accurate repair of DNA double-strand breaks during meiosis.[113]

    In human culture

    Ancient statue of the rice goddess Dewi Sri[114][115] from Java (c. 9th century)

    Rice plays an important role in certain religions and popular beliefs. In Hindu wedding ceremonies, rice, denoting fertility, prosperity, and purity, is thrown into the sacred fire, a custom modified in Western weddings, where people throw rice over the wedded couple.[116] In Malay weddings, rice features in multiple special wedding foods such as sweet glutinous rice.[117] In Japan and the Philippines, rice wine is used for weddings and other celebrations.[118] Dewi Sri is a goddess of the Indo-Malaysian archipelago, who in myth is transformed into rice or other crops.[115] The start of the rice planting season is marked in Asian countries including Nepal and Cambodia with a Royal Ploughing Ceremony.[119][120][121]

  • FOOD

    Food is any substance consumed by an organism for nutritional support. Food is usually of plant, animal, or fungal origin and contains essential nutrients such as carbohydratesfatsproteinsvitamins, or minerals. The substance is ingested by an organism and assimilated by the organism’s cells to provide energy, maintain life, or stimulate growth. Different species of animals have different feeding behaviours that satisfy the needs of their metabolisms and have evolved to fill a specific ecological niche within specific geographical contexts.

    Omnivorous humans are highly adaptable and have adapted to obtaining food in many different ecosystems. Humans generally use cooking to prepare food for consumption. The majority of the food energy required is supplied by the industrial food industry, which produces food through intensive agriculture and distributes it through complex food processing and food distribution systems. This system of conventional agriculture relies heavily on fossil fuels, which means that the food and agricultural systems are one of the major contributors to climate change, accounting for as much as 37% of total greenhouse gas emissions.[1]

    The food system has a significant impact on a wide range of other social and political issues, including sustainabilitybiological diversityeconomicspopulation growthwater supply, and food securityFood safety and security are monitored by international agencies, like the International Association for Food Protection, the World Resources Institute, the World Food Programme, the Food and Agriculture Organization, and the International Food Information Council.

    Definition and classification

    Food is any substance consumed to provide nutritional support and energy to an organism.[2][3] It can be raw, processed, or formulated and is consumed orally by animals for growth, health, or pleasure. Food is mainly composed of water, lipidsproteins, and carbohydrates. Minerals (e.g., salts) and organic substances (e.g., vitamins) can also be found in food.[4] Plants, algae, and some microorganisms use photosynthesis to make some of their own nutrients.[5] Water is found in many foods and has been defined as food by itself.[6] Water and fiber have low energy densities, or calories, while fat is the most energy-dense component.[3] Some inorganic (non-food) elements are also essential for plant and animal functioning.[7]

    Human food can be classified in various ways, either by related content or by how it is processed.[8] The number and composition of food groups can vary. Most systems include four basic groups that describe their origin and relative nutritional function: Vegetables and Fruit, Cereals and Bread, Dairy, and Meat.[9] Studies that look into diet quality group food into whole grains/cereals, refined grains/cereals, vegetables, fruits, nuts, legumes, eggs, dairy products, fish, red meat, processed meat, and sugar-sweetened beverages.[10][11][12] The Food and Agriculture Organization and World Health Organization use a system with nineteen food classifications: cereals, roots, pulses and nuts, milk, eggs, fish and shellfish, meat, insects, vegetables, fruits, fats and oils, sweets and sugars, spices and condiments, beverages, foods for nutritional uses, food additives, composite dishes and savory snacks.[13]

    Food sources

    A typical aquatic food web

    In a given ecosystem, food forms a web of interlocking chains with primary producers at the bottom and apex predators at the top.[14] Other aspects of the web include detrovores (that eat detritis) and decomposers (that break down dead organisms).[14] Primary producers include algae, plants, bacteria and protists that acquire their energy from sunlight.[15] Primary consumers are the herbivores that consume the plants, and secondary consumers are the carnivores that consume those herbivores. Some organisms, including most mammals and birds, diet consists of both animals and plants, and they are considered omnivores.[16] The chain ends with the apex predators, the animals that have no known predators in its ecosystem.[17] Humans are considered apex predators.[18]

    Humans are omnivores, finding sustenance in vegetables, fruits, cooked meat, milk, eggs, mushrooms and seaweed.[16] Cereal grain is a staple food that provides more food energy worldwide than any other type of crop.[19] Corn (maize), wheat, and rice account for 87% of all grain production worldwide.[20][21][22] Just over half of the world’s crops are used to feed humans (55 percent), with 36 percent grown as animal feed and 9 percent for biofuels.[23] Fungi and bacteria are also used in the preparation of fermented foods like breadwinecheese and yogurt.[24]

    Photosynthesis

    During photosynthesis, energy from the sun is absorbed and used to transform water and carbon dioxide in the air or soil into oxygen and glucose. The oxygen is then released, and the glucose stored as an energy reserve.[25] Photosynthetic plants, algae and certain bacteria often represent the lowest point of the food chains,[26][27] making photosynthesis the primary source of energy and food for nearly all life on earth.[28]

    Plants also absorb important nutrients and minerals from the air, natural waters, and soil.[29] Carbon, oxygen and hydrogen are absorbed from the air or water and are the basic nutrients needed for plant survival.[30] The three main nutrients absorbed from the soil for plant growth are nitrogen, phosphorus and potassium, with other important nutrients including calcium, sulfur, magnesium, iron boron, chlorine, manganese, zinc, copper molybdenum and nickel.[30]

    Microorganisms

    Bacteria and other microorganisms also form the lower rungs of the food chain. They obtain their energy from photosynthesis or by breaking down dead organisms, waste or chemical compounds. Some form symbiotic relationships with other organisms to obtain their nutrients.[31] Bacteria provide a source of food for protozoa,[32] who in turn provide a source of food for other organisms such as small invertebrates.[33] Other organisms that feed on bacteria include nematodes, fan worms, shellfish and a species of snail.

    In the marine environment, plankton (which includes bacteriaarchaeaalgaeprotozoa and microscopic fungi)[34] provide a crucial source of food to many small and large aquatic organisms.

    Without bacteria, life would scarcely exist because bacteria convert atmospheric nitrogen into nutritious ammonia. Ammonia is the precursor to proteins, nucleic acids, and most vitamins. Since the advent of industrial process for nitrogen fixation, the Haber-Bosch Process, the majority of ammonia in the world is human-made.[35]

    Plants

    Foods from plant sources

    Plants as a food source are divided into seeds, fruits, vegetables, legumes, grains and nuts.[36] Where plants fall within these categories can vary, with botanically described fruits such as the tomato, squash, pepper and eggplant or seeds like peas commonly considered vegetables.[37] Food is a fruit if the part eaten is derived from the reproductive tissue, so seeds, nuts and grains are technically fruit.[38][39] From a culinary perspective, fruits are generally considered the remains of botanically described fruits after grains, nuts, seeds and fruits used as vegetables are removed.[40] Grains can be defined as seeds that humans eat or harvest, with cereal grains (oats, wheat, rice, corn, barley, rye, sorghum and millet) belonging to the Poaceae (grass) family[41] and pulses coming from the Fabaceae (legume) family.[42] Whole grains are foods that contain all the elements of the original seed (bran, germ, and endosperm).[43] Nuts are dry fruits, distinguishable by their woody shell.[40]

    Fleshy fruits (distinguishable from dry fruits like grain, seeds and nuts) can be further classified as stone fruits (cherries and peaches), pome fruits (apples, pears), berries (blackberry, strawberry), citrus (oranges, lemon), melons (watermelon, cantaloupe), Mediterranean fruits (grapes, fig), tropical fruits (banana, pineapple).[40] Vegetables refer to any other part of the plant that can be eaten, including roots, stems, leaves, flowers, bark or the entire plant itself.[44] These include root vegetables (potatoes and carrots), bulbs (onion family), flowers (cauliflower and broccoli), leaf vegetables (spinach and lettuce) and stem vegetables (celery and asparagus).[45][44]

    The carbohydrate, protein and lipid content of plants is highly variable. Carbohydrates are mainly in the form of starch, fructose, glucose and other sugars.[36] Most vitamins are found from plant sources, with the exception of vitamin D and vitamin B12Minerals can also be plentiful or not. Fruit can consist of up to 90% water, contain high levels of simple sugars that contribute to their sweet taste, and have a high vitamin C content.[36][40] Compared to fleshy fruit (excepting Bananas) vegetables are high in starch,[46] potassium, dietary fiber, folate and vitamins and low in fat and calories.[47] Grains are more starch based[36] and nuts have a high protein, fiber, vitamin E and B content.[40] Seeds are a good source of food for animals because they are abundant and contain fiber and healthful fats, such as omega-3 fats.[48][49] Complicated chemical interactions can enhance or depress bioavailability of certain nutrients. Phytates can prevent the release of some sugars and vitamins.[36]

    Animals that only eat plants are called herbivores, with those that mostly just eat fruits known as frugivores,[50] leaves, while shoot eaters are folivores (pandas) and wood eaters termed xylophages (termites).[51] Frugivores include a diverse range of species from annelids to elephants, chimpanzees and many birds.[52][53][54] About 182 fish consume seeds or fruit.[55] Animals (domesticated and wild) use as many types of grasses that have adapted to different locations as their main source of nutrients.[56]

    Humans eat thousands of plant species; there may be as many as 75,000 edible species of angiosperms, of which perhaps 7,000 are often eaten.[57] Plants can be processed into breads, pasta, cereals, juices and jams or raw ingredients such as sugar, herbs, spices and oils can be extracted.[36] Oilseeds are pressed to produce rich oils – ⁣sunflowerflaxseedrapeseed (including canola oil) and sesame.[58]

    Many plants and animals have coevolved in such a way that the fruit is a good source of nutrition for the animal, who then excretes the seeds some distance away, allowing greater dispersal.[59] Even seed predation can be mutually beneficial, as some seeds can survive the digestion process.[60][61] Insects are major eaters of seeds,[48] with ants being the only real seed dispersers.[62] Birds, although being major dispersers,[63] only rarely eat seeds as a source of food and can be identified by their thick beak that is used to crack open the seed coat.[64] Mammals eat a more diverse range of seeds, as they are able to crush harder and larger seeds with their teeth.[65]

    Animals

    Various raw meats

    Animals are used as food either directly or indirectly. This includes meat, eggs, shellfish and dairy products like milk and cheese.[66] They are an important source of protein and are considered complete proteins for human consumption as they contain all the essential amino acids that the human body needs.[67] One 4-ounce (110 g) steak, chicken breast or pork chop contains about 30 grams of protein. One large egg has 7 grams of protein. A 4-ounce (110 g) serving of cheese has about 15 grams of protein. And 1 cup (~240 mL) of milk has about 8 grams of protein.[67] Other nutrients found in animal products include calories, fat, essential vitamins (including B12) and minerals (including zinc, iron, calcium, magnesium).[67]

    Food products produced by animals include milk produced by mammary glands, which in many cultures is drunk or processed into dairy products (cheese, butter, etc.). Eggs laid by birds and other animals are eaten and bees produce honey, a reduced nectar from flowers that is used as a popular sweetener in many cultures. Some cultures consume blood, such as in blood sausage, as a thickener for sauces, or in a curedsalted form for times of food scarcity, and others use blood in stews such as jugged hare.[68]

    Taste

    Main article: Taste

    Animals, specifically humans, typically have five different types of tastes: sweetsoursaltybitter, and umami. The differing tastes are important for distinguishing between foods that are nutritionally beneficial and those which may contain harmful toxins.[69] As animals have evolved, the tastes that provide the most energy are the most pleasant to eat while others are not enjoyable,[70] although humans in particular can acquire a preference for some substances which are initially unenjoyable.[69] Water, while important for survival, has no taste.[71]

    Sweetness is almost always caused by a type of simple sugar such as glucose or fructose, or disaccharides such as sucrose, a molecule combining glucose and fructose.[72] Sourness is caused by acids, such as vinegar in alcoholic beverages. Sour foods include citrus, specifically lemons and limes. Sour is evolutionarily significant as it can signal a food that may have gone rancid due to bacteria.[73] Saltiness is the taste of alkali metal ions such as sodium and potassium. It is found in almost every food in low to moderate proportions to enhance flavor. Bitter taste is a sensation considered unpleasant characterised by having a sharp, pungent taste. Unsweetened dark chocolate, caffeine, lemon rind, and some types of fruit are known to be bitter. Umami, commonly described as savory, is a marker of proteins and characteristic of broths and cooked meats.[74] Foods that have a strong umami flavor include cheese, meat and mushrooms.[75]

    Catfish have millions of taste buds covering their entire body.

    While most animals taste buds are located in their mouth, some insects taste receptors are located on their legs and some fish have taste buds along their entire body.[76][77] Dogs, cats and birds have relatively few taste buds (chickens have about 30),[78] adult humans have between 2000 and 4000,[79] while catfish can have more than a million.[77] Herbivores generally have more than carnivores as they need to tell which plants may be poisonous.[78] Not all mammals share the same tastes: some rodents can taste starch, cats cannot taste sweetness, and several carnivores (including hyenas, dolphins, and sea lions) have lost the ability to sense up to four of the five taste modalities found in humans.[80]

    Digestion

    Main article: Digestion

    Food is broken into nutrient components through digestive process.[81] Proper digestion consists of mechanical processes (chewingperistalsis) and chemical processes (digestive enzymes and microorganisms).[82][83] The digestive systems of herbivores and carnivores are very different as plant matter is harder to digest. Carnivores mouths are designed for tearing and biting compared to the grinding action found in herbivores.[84] Herbivores however have comparatively longer digestive tracts and larger stomachs to aid in digesting the cellulose in plants.[85][86]

    Food safety

    Main article: Food safety

    According to the World Health Organization (WHO), about 600 million people worldwide get sick and 420,000 die each year from eating contaminated food.[87][88] Diarrhea is the most common illness caused by consuming contaminated food, with about 550 million cases and 230,000 deaths from diarrhea each year. Children under five years of age account for 40% of the burden of foodborne illness, with 125,000 deaths each year.[88][89]

    A 2003 World Health Organization (WHO) report concluded that about 30% of reported food poisoning outbreaks in the WHO European Region occur in private homes.[90] According to the WHO and CDC, in the US alone, annually, there are 76 million cases of foodborne illness leading to 325,000 hospitalizations and 5,000 deaths.[91]

    From 2011 to 2016, on average, there were 668,673 cases of foodborne illness and 21 deaths each year.[92][93][94][95] In addition, during this period, 1,007 food poisoning outbreaks with 30,395 cases of food poisoning were reported.[88]